A framework for finding robust optimal solutions over time

نویسندگان

  • Yaochu Jin
  • Ke Tang
  • Xin Yu
  • Bernhard Sendhoff
  • Xin Yao
چکیده

Dynamic optimization problems (DOPs) are those whose specifications change over time, resulting in changing optima. Most research on DOPs has so far concentrated on tracking the moving optima (TMO) as closely as possible. In practice, however, it will be very costly, if not impossible to keep changing the design when the environment changes. To address DOPs more practically, we recently introduced a conceptually new problem formulation, which is referred to as robust optimization over time (ROOT). Based on ROOT, an optimization algorithm aims to find an acceptable (optimal or sub-optimal) solution that changes slowly over time, rather than the moving global optimum. In this paper, we propose a generic framework for solving DOPs using the ROOT concept, which searches for optimal solutions that are robust over time by means of local fitness approximation and prediction. Empirical investigations comparing a few representative TMO approaches with an instantiation of the proposed framework are conducted on a number of test problems to demonstrate the advantage of the proposed framework in the ROOT context.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

Robust Agent Based Distribution System Restoration with Uncertainty in Loads in Smart Grids

This paper presents a comprehensive robust distributed intelligent control for optimum self-healing activities in smart distribution systems considering the uncertainty in loads. The presented agent based framework obviates the requirements for a central control method and improves the reliability of the self-healing mechanism. Agents possess three characteristics including local views, decentr...

متن کامل

An Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem

This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...

متن کامل

Adaptive Setting of UFLS Relay Using Hourly Programming with Consideration of Renewable Energy Sources in Smart Grid

In the light of the emergence of smart grids, the functions associated with this type of grids in the blocks of the energy management system require the adoption of robust strategies in order to provide a higher level of control and protection. Under-frequency load shedding (UFLS) sheds load blocks when the frequency drop is below the threshold limit. In adaptive UFLS, in an advanced telecommun...

متن کامل

MILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints

In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Memetic Computing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013